
Selecting Features to Classify Malware
Karthik Raman #1

Product Security Incident Response Team (PSIRT), Adobe Systems, Inc.
601 Townsend Street, San Francisco, CA 94103

1 kraman@adobe.com

Abstract—Malware is a menace to computing. The lag between
malware landing on a user’s system and the development of
signatures to detect the same malware can prove catastrophic
for users. Using data mining, we identify seven key features
within the Microsoft PE file format that can be fed to machine-
learning algorithms to classify malware. The resulting models
classify malware with results comparable to existing research
that uses many more features.

I. INTRODUCTION

Malicious computer programs, or malware, are a pressing
business and personal computing problem. Malware evolves
rapidly. Detecting new malware, which may just be variants of
existing malware, is a strain on antivirus engines. If antivirus
signatures are too general, then there is greater risk of false
positives; if the signatures are too specific, then many variants
of the same malware can be undetected. Theoretical results
imply that no antivirus (AV) program can detect all computer
viruses [1][2]. While the task of an AV program is to detect
as many computer viruses as possible, before it can detect
a heretofore unknown program as malware, it first needs to
classify the unknown program as possibly malicious or clean.

Computer antivirus expert Peter Szor defines a computer
virus as “a program that recursively and explicitly copies
a possibly evolved copy of itself”[3]. Viruses can be fur-
ther categorized into worms, Trojans, spyware, rootkits, and
logic bombs[4]. In this research, we are concerned with the
classification, using static file features, of viruses that are
themselves not products of a virus infection. The problem of
the correct classification, detection, and repair of programs
that are benign to begin and become infected is out of scope.
We shall use the term “malware” to refer to the category of
viruses we are interested in detecting. The proliferation of
malware variants means that classifying malware is one of
the biggest challenges in computer security[5][6]. We focus on
approaching a solution to this problem using machine learning.

A. Scope

Microsoft Windows operating systems (OSes) are the most
widely used OSes in the world today. The prevalence of
Windows makes it an attractive environment for virus writers
to write malware for. The chief executable format for Windows
is the Portable Executable (PE), a Microsoft standard[7][8]. In

c©2012 Adobe Systems Incorporated.

this research, we focus on malware written in the PE format
for 32-bit Windows operating systems.

II. MACHINE LEARNING FOR MALWARE DETECTION

Siddiqui et al. used data-mining techniques to detect
Trojans[9]. They mined n-grams from the body of Trojans
and used these as features. Their dataset consisted of 4722 PE
files, of which 3000 were Trojans and 1722 were clean. They
used Random Forest and Principal Component Analysis algo-
rithms for feature selection, and the Random Forest algorithm
and Support Vector Machines for classification. This method
resulted in a 94% detection rate for new Trojans.

Schultz et. al presented a data-mining framework to detect
new executables[10]. They used 4266 programs of which
3265 were malicious and 1001 were clean. Three kinds of
algorithms were applied: an inductive rule-based learner, a
probabilistic predictor, and a multi-classifier. The classifiers
were ported into a signature-based detection algorithm which
had a detection rate of 97.76%.

Shafiq et al. presented the “PE-Miner” framework[11]. They
extracted structural features from executables to detect new
malware in real time. To guide feature-selection, they used an
analysis of outliers of aggregate values of fields extracted from
the PE header of files; they settled on 189 features. They used
Redundant Feature Removal, Principal Component Analysis,
and Haar Wavelet Transform for feature selection. They used
various algorithms for detection. They evaluated their system
using the VX Heavens and Malfease datasets and obtained a
detection rate of 99% and a false positive rate of less than
0.5%.

Ye et al. presented a system that used objective-oriented
association mining to detect malware with a 92% detection
rate[12]. Ye et al. presented another system that used analysis
of strings in a program’s body to detect malware[13]. This
system had a 93.8% detection rate.

III. RELATED WORK

Shafiq et al. asked, “Which PE format specific features can
be statically extracted from PE files to distinguish between
benign and malicious files”[11]? We attempt to answer this
question by analyzing each PE format feature we extracted,
combining them intelligently, and reducing the set of features
for classification to a small set.

Unlike the research of Siddiqui et al., we analyze not only
Trojans but also other types of malware. Further, our feature
set is the metadata in the PE file, instead of n-grams from
the PE file body. They used 4722 files in their experiments[9].
Schultz et. al indicate that in future work they would evaluate
their model over a larger data set than used, 4266 files[10].
Shafiq et al. used approximately 15,000 files[11]. We used a
larger data set of approximately 116,000 programs, of which
100,000 are malicious and 16,000 are clean. Our data also
differs from Shafiq et al.’s work in the number of initial
features being analyzed. We look at 100 per file, compared
to 189 by Shafiq et al. Further, they had used three feature-
selection algorithms to preprocess the data. They obtained
the best classification results with the RFR preprocessing.
However, the number and list of features obtained from RFR
is not published.

Like the work done by Khan et al., we analyze the metadata
in a PE file including the DOS header, COFF header, PE
optional header, data directories, import table, section table,
and resources[14]. We used Microsoft’s pedump utility to
extract features from our data set. We wrote a parser to extract
the features of interest and aggregate them where possible.
Like Shafiq et al., we do not attempt to unpack binaries
before extracting their features. The problem of unpacking
compressed or obfuscated binaries is out of scope.

IV. EXPERIMENTS

Our clean files come from the base installations of Windows
XP and Windows 7. Our dirty files come from a subset
of the VX Heavens archive at vx.netlux.org. We conduct
experiments for attribute (feature) selection and classification
using WEKA, a machine-learning workbench with implemen-
tations of machine-learning algorithms. It is written for domain
experts who “need an environment in which they can easily
manipulate data and run experiments themselves”[15].

According to Witten et al., irrelevant features have negative
effects on machine learning. Removing them improves the
performance of algorithms, speeds them up, represents the
problem better, and focuses the user’s attention on important
variables. They write, “The best way to select attributes is
manually, based on a deep understanding of the learning
problem and what the attributes actually mean”[16]. We used
our experience in malware analysis to select a set of 100
features from the initial 645 features. We included almost
all the features of metadata in the PE header, data about
each of the 10 sections, and all imports and exports-related
features. We created a dataset of 5193 dirty files and 3722
clean files to evaluate these 100 features. We ran the Random
Forest algorithm 100 times using each of the 100 features at a
time[17]. A Random Forest classifier that used the DebugSize
feature alone had 92.34% accuracy. The 13 features that
had the highest individual accuracy are listed in Table I in
decreasing order of accuracy.

We recognized that some features are correlated highly to
each other and that these would be in the same parts of the
PE file. In order to separate highly correlated features, we

TABLE I
FEATURE EVALUATION

Feature Name Accuracy
DebugSize 0.9234
DebugRVA 0.9224
ImageVersion 0.8898
OperatingSystemVersion 0.8850
SizeOfStackReserve 0.8837
LinkerVersion 0.8599
DllCharacteristics 0.8273
IatRVA 0.8249
ExportSize 0.8146
ExportRVA 0.8122
ExportNameLen 0.8084
ResourceSize 0.8025
ExportFunctionsCount 0.8001

sorted the features in decreasing order of individual accuracy
in classification and then categorized them into seven buckets
according to where in the PE file the features originated.
We would define a new bucket whenever we encountered a
feature going down this list from a different part of the PE
file. The seven resulting buckets can be labeled DataDirectory,
OptionalHeader, Imports, Exports, Resources, Sections, and
FileHeader.

A. Feature Selection Algorithm

To find a minimum feature set, we used the intuition that the
most important, less-correlated features would be the features
with the highest individual accuracy from each bucket. In
this respect, the first feature in each of the seven buckets
was DebugSize, ImageVersion, IatRVA, ExportSize, Resource-
Size, VirtualSize2, and NumberOfSections respectively. We
ran thirteen experiments with six different machine-learning
classifiers to find a minimum feature using the following
algorithm:

Let n be the number of features during an iteration. Start
with n=1, with a feature set F compromised of the feature
with the highest accuracy (DebugSize) from the bucket with
the highest accuracy (DataDirectory). An iteration is defined
as:

1) Run IBk, J48, J48 Graft, PART, Random Forest, and
Ridor classifiers using F [18][19][20][21][17][22]. Note
accuracy of model

2) Go to the next bucket in this order: OptionalHeader,
Imports, Exports, Resources, Sections, FileHeader. Af-
ter each bucket has been visited, wrap around to the
DataDirectory bucket and continue in this order

3) Pick the feature with the highest individual accuracy
from the current bucket that has not already been picked.
Add this feature to F. F now contains n+1 features

4) Go to step 1.
We terminated after 13 iterations.

V. RESULTS

The results of the above experiments are graphed in Fig-
ures 1 through 6.

Fig. 1. Classification using IBk

Fig. 2. Classification using J48

In the graphs we see a steep gain in accuracy with each
iteration until the eighth one, where the incremental gain in
accuracy starts to become small. The features used in the
seventh experiment are DebugSize, ImageVersion, IatRVA, Ex-
portSize, ResourceSize, VirtualSize2, and NumberOfSections.
These are the features with the highest individual accuracy
taken from each of the seven buckets described earlier. We
attempt to explain why these seven features lend themselves
to good classification from the definitions of these fields and
inspecting our data post-hoc:

1) DebugSize. Denotes the size of the debug-directory
table. Usually, Microsoft-related executable files have a
debug directory. Hence many clean programs may have
a non-zero value for DebugSize

2) ImageVersion. Denotes the version of the file. It is user-
definable and not related to the function of the program.
Many clean programs have more versions and a larger
image-version set. Most malware have an ImageVersion
value of 0

3) IatRVA. Denotes the relative-virtual address of the
import-address table. The value of this feature is 4096
for most clean files and 0 or a very large value for virus
files. Many malware may not use import functions or
might obfuscate their import tables[23]

4) ExportSize. Denotes the size of the export table. Usually,
only DLLs, not executable programs, have export tables.
Hence the value of this feature may be non-zero for clean

Fig. 3. Classification using J48 Graft

Fig. 4. Classification using PART

files, which contain many DLLs, and 0 for virus files
5) ResourceSize. Denotes the size of the resource section.

Some virus files may have no resources. Clean files may
have larger resources

6) VirtualSize2. Denotes the size of the second section.
Many viruses have only one section and the value of
this field is 0 for them

7) NumberOfSections. Denotes the number of sections. The
value of this feature varies in both virus and clean files
and it is not clear from inspection how this feature helps
separate malware and clean files.

A. Classification with Fewer Features

We divided our dataset of 100,000 malware and 16,000
clean files into five parts, and used the seven features we
selected in our experiment as input to IBk, J48, J48 Graft,
PART, Random Forest, and Ridor. The averaged evaluations
of classifiers, run with ten-fold cross-validation, from the five
sets of experiments are presented in Table II. The metrics used
are:

• True Positives (TP): Number of dirty files classified as
dirty

• True Negatives (TN): Number of clean files classified as
clean

• False Positives (FP): Number of clean files classified as
dirty

• False Negatives (FN): Number of dirty files classified as
clean

Fig. 5. Classification using Random Forest

Fig. 6. Classification using Ridor

• True positive rate =

TP/(TP + FN) (1)

• False positive rate =

FP/(TN + FP) (2)

• Accuracy =

TP + TN/(TP + TN + FP + FN) (3)

TABLE II
EVALUATING CLASSIFIERS FED SEVEN FEATURES

Classifier TP Rate FP Rate Accuracy
IBk 0.9730 0.0936 0.9730
Random Forest 0.9822 0.0670 0.9821
J48 0.9856 0.0568 0.9854
J48 Graft 0.9856 0.0592 0.9855
Ridor 0.9792 0.0738 0.9791
PART 0.9822 0.0670 0.9821

B. Discussion

J48 was the best classification algorithm data for these data
out of the six classifiers tried. The features DebugSize, Im-
ageVersion, IatRVA, ExportSize, ResourceSize, VirtualSize2,
and NumberOfSections each capture key data about different
parts of a PE file. When used as input to machine-learning
classifiers, they result in models with evaluation results com-
parable to existing research projects.

We have implemented the classification rules resultant from
the models for J48, J48 Graft, PART, and Ridor as a Python
script for others to study and extend. This script can be
considered a prototypical malware classifier.

Here is a comparison of the performances of our best
classifier to results in related research where the number of
features used for classification was called out:

TABLE III
COMPARISON TO RELATED RESEARCH

Paper No. Features Used TP Rate FP Rate
Shafiq et al.[11] 189 99% 0.5%
Siddiqui et al.[9] 84 92.4% 9.2%
Khan et al.[14] 42 78.1% 6.7%
This paper 7 98.56% 5.68%

VI. CONCLUSION

In this paper, we presented a set of seven key features
that can be used to distinguish between malware and clean
programs. To identify these features, we had used the intuition
that features from different parts of a PE file would be
correlated less with each other and more with the class of
the file, dirty or clean. These features can be used as input to
machine-learning algorithms to classify malware. The results
of this classification can be used by antivirus programs to
improve their detection rates.

ACKNOWLEDGMENT

We wish to acknowledge Profs. Athina Markopoulos,
Michael Franz, and Donald J. Patterson, and Dr. Christophe
Magnan of UC Irvine for their guidance.

REFERENCES

[1] F. Cohen, “Computer viruses: theory and experiments,” Comput. Secur.,
vol. 6, pp. 22–35, February 1987.

[2] D. M. Chess and S. R. White, “An undetectable computer virus,” in In
Proceedings of Virus Bulletin Conference, 2000.

[3] P. Szor, The Art of Computer Virus Research and Defense. Upper
Saddle River, NJ: Addison Wesley, 2005.

[4] R. Guess and E. Salveggio, Malicious Code, 5th ed. John Wiley &
Sons, 2009, ch. 16.

[5] A. Walenstein, M. Venable, M. Hayes, C. Thompson, and Lakhotia, “A.:
Exploiting similarity between variants to defeat malware: vilo method
for comparing and searching binary programs,” in In: Proceedings of
BlackHat DC 2007. (2007) https: //blackhat.com/presentations/bh-dc-
07/Walenstein/Paper/bh-dc-07-walenstein-WP.pdf.

[6] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Poly-
morphic worm detection using structural information of executables,”
in Proc. Eighth Symp. Recent Advances in Intrusion Detection (RAID),
2005.

[7] M. Pietrek, “Peering inside the pe: A tour of the win32 portable
executable file format,” MSDN Magazine, March 1994.

[8] ——, “An in-depth look into the win32 portable executable file format,”
MSDN Magazine, February 2002.

[9] M. Siddiqui, M. C. Wang, and J. Lee, “Detecting trojans using data
mining techniques.” in IMTIC, ser. Communications in Computer and
Information Science, D. M. A. Hussain, A. Q. K. Rajput, B. S.
Chowdhry, and Q. Gee, Eds., vol. 20. Springer, 2008, pp. 400–411.

[10] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data mining
methods for detection of new malicious executables,” in Proceedings
of the 2001 IEEE Symposium on Security and Privacy. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 38–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=882495.884439

[11] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “Pe-miner: Mining
structural information to detect malicious executables in realtime,” in
Proceedings of the 12th International Symposium on Recent Advances
in Intrusion Detection, ser. RAID ’09. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 121–141.

[12] Y. Ye, D. Wang, T. Li, and Ye, “Imds: Intelligent malware detection
system,” in Proccedings of ACM International Conference on Knowlege
Discovery and Data Mining (SIGKDD 2007), 2007.

[13] Y. Ye, L. Chen, D. Wang, T. Li, Q. Jiang, and M. Zhao, “Sbmds: an
interpretable string based malware detection system using svm ensemble
with bagging,” Journal in Computer Virology, vol. 5, no. 4, pp. 283–293,
2009.

[14] H. Khan, F. Mirza, and S. Khayam, “Determining malicious executable
distinguishing attributes and low-complexity detection,” Journal in
Computer Virology, pp. 1–11, 2010, 10.1007/s11416-010-0140-6.
[Online]. Available: http://dx.doi.org/10.1007/s11416-010-0140-6

[15] G. Holmes, A. Donkin, and I. Witten, “Weka: a machine learning
workbench,” in Intelligent Information Systems,1994. Proceedings of the
1994 Second Australian and New Zealand Conference on, November
1994, pp. 357 –361.

[16] I. Witten, “Weka: Practical machine learning tools and techniques with
java implementations,” 1999.

[17] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[18] D. Aha and D. Kibler, “Instance-based learning algorithms,” Machine
Learning, vol. 6, pp. 37–66, 1991.

[19] R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann Publishers, 1993.

[20] G. Webb, “Decision tree grafting from the all-tests-but-one partition.”
San Francisco, CA: Morgan Kaufmann, 1999.

[21] E. Frank and I. H. Witten, “Generating accurate rule sets without
global optimization.” in Proc 15th International Conference on Machine
Learning, ser. Madison, Wisconsin. Morgan Kaufmann, 1998, pp. 144–
151.

[22] B. R. Gaines and P. Compton, “Induction of ripple-down rules applied to
modeling large databases,” J. Intell. Inf. Syst., vol. 5, no. 3, pp. 211–228,
1995.

[23] E. U. Kumar, A. Kapoor, and A. Lakhotia, “Virus bulletin technical
feature: Doc - answering the hidden ‘call’ of a virus,” 2005.

